用于疼痛管理的有机纳米载体研究进展

周秀婷, 申春姣, 宋小丹, 何朝星, 张佳, 杨少坤, 贾庆忠, 向柏

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (1) : 10-17.

PDF(1370 KB)
PDF(1370 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (1) : 10-17. DOI: 10.11669/cpj.2023.01.003
综述

用于疼痛管理的有机纳米载体研究进展

  • 周秀婷1, 申春姣1, 宋小丹1, 何朝星1, 张佳2, 杨少坤1*, 贾庆忠1*, 向柏1*
作者信息 +

Research Progress of Organic Nanocarriers in Pain Management

  • ZHOU Xiu-ting1, SHEN Chun-jiao1, SONG Xiao-dan1, HE Chao-xing1, ZHANG Jia2, YANG Shao-kun1*, JIA Qing-zhong1*, XIANG Bai1*
Author information +
文章历史 +

摘要

疼痛是世界范围内普遍存在且日益严重的健康问题,其作为一种不愉快的主观感觉,给患者带来了极大不便,也给社会带来了巨大的经济负担。在疼痛管理领域,给予镇痛药仍是目前主要依赖的管理方式。尽管大量的镇痛药(如局部麻醉药、非甾体类抗炎药和阿片类药物) 具有良好的镇痛作用,但是由于存在药物选择性低、疼痛发生机制的复杂性、个体差异性等原因,导致出现了药物生物利用度低、毒副作用大的问题。近年来,部分学者发现具有良好生物相容性、生物可降解性的有机纳米载体可以提高镇痛药的生物利用度,提高用药安全性并改善疗效。因此,本文主要就近十年来有机纳米载体在疼痛领域的应用进行综述,为学者对该领域进一步研究提供参考。

Abstract

Pain is a widespread and increasingly serious health problem all over the world. As an unpleasantly subjective feeling, it not only brings great inconvenience to patients, but also increases the economic burden on society. In the field of pain management, the administration of analgesics is currently the main management method. Although a large number of analgesics(such as local anesthetics, nonsteroidal anti-inflammatory drugs and opioids) have good analgesic effects, there will also be the problems of large toxic and side effects and low bioavailability of drugs, due to low drug selectivity, complexity of pain mechanism, individual differences and so on. In recent years, studies have demonstrated that organic nanocarriers with good biocompatibility and biodegradability were able to improve the bioavailability of analgesics, enhance drug safety and promote therapeutic effect. Therefore, it has been mainly summarized the application of organic nanocarriers in pain management in the past decade, so as to facilitate scholars′ further study in this field.

关键词

有机纳米载体 / 脂质体 / 聚合物载体 / 镇痛药 / 疼痛管理 / 局部镇痛 / 癌症疼痛

Key words

organic nanocarrier / liposome / polymeric carrier / analgesic / pain management / local analgesia / cancer pain

引用本文

导出引用
周秀婷, 申春姣, 宋小丹, 何朝星, 张佳, 杨少坤, 贾庆忠, 向柏. 用于疼痛管理的有机纳米载体研究进展[J]. 中国药学杂志, 2023, 58(1): 10-17 https://doi.org/10.11669/cpj.2023.01.003
ZHOU Xiu-ting, SHEN Chun-jiao, SONG Xiao-dan, HE Chao-xing, ZHANG Jia, YANG Shao-kun, JIA Qing-zhong, XIANG Bai. Research Progress of Organic Nanocarriers in Pain Management[J]. Chinese Pharmaceutical Journal, 2023, 58(1): 10-17 https://doi.org/10.11669/cpj.2023.01.003
中图分类号: R944   

参考文献

[1] JAYAKAR S, SHIM J, JO S, et al. Developing nociceptor-selective treatments for acute and chronic pain [J]. Sci Transl Med, 2021, 13(619): eabj9837. DOI: 10.1126/scitranslmed.abj9837.
[2] MERCER LINDSAY N, CHEN C, GILAM G, et al. Brain circuits for pain and its treatment [J]. Sci Transl Med, 2021, 13(619): eabj7360. DOI: 10.1126/scitranslmed.abj7360.
[3] GASKIN D J, RICHARD P. The economic costs of pain in the United States [J]. J Pain, 2012, 13(8): 715-724.
[4] KARRI J, SINGH M, MODI D J, et al. Combination Intrathecal Drug Therapy Strategies for Pain Management [J]. Pain Physician, 2021, 24(8): 549-569.
[5] BEIRANVAND S, SORORI M M. Pain management using nanotechnology approaches [J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 462-468.
[6] TURK D C, WILSON H D, CAHANA A. Treatment of chronic non-cancer pain [J]. Lancet, 2011, 377(9784): 2226-2235.
[7] ANTIMISIARIS S G, MARAZIOTI A, KANNAVOU M, et al. Overcoming barriers by local drug delivery with liposomes [J]. Adv Drug Deliv Rev, 2021, 174:53-86.
[8] HUBLER C P, BEVIL K M, GREINER J J, et al. Liposomal bupivacaine versus standard bupivacaine in the adductor canal for total knee arthroplasty: a randomized, controlled trial [J]. Orthopedics, 2021, 44(4): 249-255.
[9] LEASIA K N, CIARALLO C, PRINS J T H, et al. A randomized clinical trial of single dose liposomal bupivacaine versus indwelling analgesic catheter in patients undergoing surgical stabilization of rib fractures [J]. J Trauma Acute Care Surg, 2021, 91(5): 872-878.
[10] LEWIS R E, SAPPINGTON B R, WARD A J, et al. Optimal Pain Control after Outpatient Surgery for Cutaneous Malignancies [J]. Am Surg, 2019, 85(9): 956-960.
[11] KALOGERA E, BAKKUM-GAMEZ J N, WEAVER A L, et al. Abdominal Incision Injection of Liposomal Bupivacaine and Opioid Use After Laparotomy for Gynecologic Malignancies [J]. Obstet Gynecol, 2016, 128(5): 1009-1017.
[12] PATEL K M, VAN HELMOND N, KILZI G M, et al. Liposomal Bupivacaine Versus Bupivacaine for Intercostal Nerve Blocks in Thoracic Surgery:A Retrospective Analysis [J]. Pain Physician, 2020, 23(3): E251-E258.
[13] ZHANG J, ZHU S, TAN Q, et al. Combination therapy with ropivacaine-loaded liposomes and nutrient deprivation for simultaneous cancer therapy and cancer pain relief [J]. Theranostics, 2020, 10(11): 4885-4899.
[14] FURLAN B, DE MELO B T, PAPINI J Z B, et al. Pre-clinical evaluation of new dibucaine formulations for preventive analgesia [J]. J Liposome Res, 2021, 31(3): 230-236.
[15] GOH J Z, TANG S N, CHIONG H S, et al. Evaluation of antinociceptive activity of nanoliposome-encapsulated and free-form diclofenac in rats and mice [J]. Int jnanomed, 2014, 10:297-303.
[16] HUA S, CABOT P J. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions:a potential novel treatment of acute and chronic pain condition [J]. Pain Physician, 2013, 16(3): E199-E216.
[17] XU W, MAQBOOL F, KUMAR V, et al. Sustained-release ketamine-loaded lipid-particulate system:in vivo assessment in mice [J]. Drug Deliv Transl Res, 2022, 12(10):2518-2526.
[18] ZHAN C, WANG W, MCALVIN J B, et al. Phototriggered Local Anesthesia [J]. Nano Lett, 2016, 16(1): 177-181.
[19] RWEI A Y, LEE J J, ZHAN C, et al. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes [J]. Proc Nat Acad Sci, 2015, 112(51): 15719-15724.
[20] MÜLLER R H, PETERSEN R D, HOMMOSS A, et al. Nanostructured lipid carriers(NLC) in cosmetic dermal products [J]. Adv Drug Deliv Rev, 2007, 59(6): 522-530.
[21] LENG F, WAN J, LIU W, et al. Prolongation of Epidural Analgesia Using Solid Lipid Nanoparticles as Drug Carrier for Lidocaine [J]. Reg Anesth Pain Med, 2012, 37(2): 159-165.
[22] RINCÓN M, CALPENA A C, CLARES B, et al. Skin-controlled release lipid nanosystems of pranoprofen for the treatment of local inflammation and pain [J]. Nanomedicine(Lond), 2018, 13(19): 2397-2413.
[23] LALATSA A, EMERIEWEN K, PROTOPSALTI V, et al. Developing transcutaneous nanoenabled anaesthetics for eyelid surgery [J]. Br J Ophthalmol, 2016, 100(6): 871-876.
[24] WANG J, ZHANG L, CHI H, et al. An alternative choice of lidocaine-loaded liposomes:lidocaine-loaded lipid-polymer hybrid nanoparticles for local anesthetic therapy [J]. Drug Deliv, 2016, 23(4): 1254-1260.
[25] PENG L H, WEI W, SHAN Y H, et al. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo [J]. Drug Dev Ind Pharm, 2017, 43(1): 55-66.
[26] JOHNSON A, HUANG Y C, MAO C F, et al. Protective effect of ethanolic extract of Echinacea purpurea contained nanoparticles on meniscal/ligamentous injury induced osteoarthritis in obese male rats [J]. Sci Rep, 2022, 12(1): 5354.
[27] BABAIE S, GHANBARZADEH S, DAVARAN S, et al. Nanoethosomes for dermal delivery of lidocaine [J]. Adv Pharm Bull, 2015, 5(4): 549-556.
[28] CHOURASIA M K, KANG L, CHAN S Y. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery [J]. Results Pharm Sci, 2011, 1(1): 60-67.
[29] SWETLEDGE S, JUNG J P, CARTER R, et al. Distribution of polymeric nanoparticles in the eye:implications in ocular disease therapy [J]. J Nanobiotechnol, 2021, 19(1): 10. DOI: 10.1186/s12951-020-00745-9.
[30] RAMOS CAMPOS E V, SILVA DE MELO N F, GUILHERME V A, et al. Preparation and characterization of poly(ε-caprolactone) nanospheres nanospheres containing the local anesthetic lidocaine [J]. J Pharm Sci, 2013, 102(1): 215-226.
[31] KAMEL R, BASHA M, EL AWDAN S. Development and evaluation of long-acting epidural "smart" thermoreversible injection loaded with spray-dried polymeric nanospheres using experimental design [J]. J Drug Target, 2013, 21(3): 277-290.
[32] SUKHBIR S, YASHPAL S, SANDEEP A. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box-Behnken design [J]. Saudi Pharm J, 2016, 24(5): 588-599.
[33] DE MELO NFS, GRILLO R, GUILHERME V A, et al. Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition of the oily nucleus on physico-chemical properties and anesthetic activity [J]. Pharm Res, 2011, 28(8): 1984-1994.
[34] MELO NFSD, CAMPOS EVR, GONÇALVES C M, et al. Development of hydrophilic nanocarriers for the charged form of the local anesthetic articaine [J]. Colloids Surfaces B:Biointerfaces, 2014, 121:66-73.
[35] VILLALBA B T, IANISKI F R, WILHELM E A, et al. Meloxicam-loaded nanocapsules have antinociceptive and antiedematogenic effects in acute models of nociception [J]. Life Sci, 2014, 115(1): 36-43.
[36] BAEK J S, YEO E W, LEE Y H, et al. Controlled-release nanoencapsulating microcapsules to combat inflammatory diseases [J]. Drug Des Devel Ther, 2017, 11:1707-1717.
[37] LORENZONI R, CONTRI R V, LIMA CKF, et al. Dermatopharmacokinetic and pharmacodynamic evaluation of a novel nanostructured formulation containing capsaicinoids for treating neuropathic pain [J]. Int J Pharm, 2021, 596: 120294. DOI: 10.1016/j.ijpharm.2021.120294
[38] MARCONDES SARI M H, ZBOROWSKI V A, FERREIRA L M, et al. Enhanced pharmacological actions of p,p′-methoxyl-diphenyl diselenide-loaded polymeric nanocapsules in a mouse model of neuropathic pain:Behavioral and molecular insights [J]. J Trace Elements Med Biol, 2018, 46:17-25.
[39] DE ARAUJO ANDRADE T, DOS PASSOS MENEZES P, DE CARVALHO Y, et al.(-)-linalool-loaded polymeric nanocapsules are a potential candidate to fibromyalgia treatment[J]. AAPS Pharm Sci Tech, 2020, 21(5): 184. DOI: 10.1208/s12249-020-01719-8.
[40] KARTHA S, YAN L, ITA M E, et al. Phospholipase A(2) Inhibitor-Loaded Phospholipid Micelles Abolish Neuropathic Pain [J]. ACS Nano, 2020, 14(7): 8103-8115.
[41] SCHERLUND M, BRODIN A, MALMSTEN M. Micellization and gelation in block copolymer systems containing local anesthetics [J]. Int J Pharm, 2000, 211(1): 37-49.
[42] WELDON C, JI T, NGUYEN M T, et al. Nanoscale Bupivacaine Formulations To Enhance the Duration and Safety of Intravenous Regional Anesthesia [J]. ACS Nano, 2019, 13(1): 18-25.
[43] ABDOLLAHI A R, FIROUZIAN F, HADDADI R, et al. Indomethacin loaded dextran stearate polymeric micelles improve adjuvant-induced arthritis in rats:design and in vivo evaluation [J]. Inflammopharmacology, 2021, 29(1): 107-121.
[44] LAMANNA G, RUSSIER J, DUMORTIER H, et al. Enhancement of anti-inflammatory drug activity by multivalent adamantane-based dendrons [J]. Biomaterials, 2012, 33(22): 5610-5617.
[45] WARD B B, HUANG B, DESAI A, et al. Sustained analgesia achieved through esterase-activated morphine prodrugs complexed with PAMAM dendrimer [J]. Pharm Res, 2013, 30(1): 247-256.
[46] GEIGER B C, WANG S, PADERA R F, J R, et al. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis [J]. Sci Transl Med, 2018, 10(469): eaat8800. DOI: 10.1126/scitranslmed.aat8800.
[47] CUI R, WU Q, WANG J, et al. Hydrogel-By-Design:Smart Delivery System for Cancer Immunotherapy [J]. Front Bioeng Biotechnol, 2021, 9: 723490. DOI: 10.3389/fbioe.2021.723490.
[48] LI H, TANG Q, WANG Y, et al. Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia [J]. Int J Pharm, 2022, 611: 121291. DOI: 10.1016/j.ijpharm.2021.121291.
[49] HOU Y, MENG X, ZHANG S, et al. Near-infrared triggered ropivacaine liposomal gel for adjustable and prolonged local anaesthesia [J]. Int J Pharm, 2022, 611: 121315. DOI: 10.1016/j.ijpharm.2021.121315.
[50] AHAD A, RAISH M, AL-MOHIZEA A M, et al. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel [J]. Int J Biol Macromole, 2014, 67:99-104.
[51] MONA B, SAMEH HOSAM ABD E-A, AHMED ALAA K, et al. Benzocaine loaded solid lipid nanoparticles: formulation design, in vitro and in vivo evaluation of local anesthetic effect [J]. Curr Drug Deliv, 2015, 12(6): 680-692.
[52] REN S, LIU H, WANG X, et al. Acupoint nanocomposite hydrogel for simulation of acupuncture and targeted delivery of triptolide against rheumatoid arthritis [J]. J Nanobiotechnol, 2021, 19(1): 409. DOI: 10.1186/s12951-021-01157-z.
[53] DECHA P, KANOKWAN K, JIRAPORN T, et al. Phonopheresis associated with nanoparticle gel from phyllanthus amarus relieves pain by reducing oxidative stress and proinflammatory markers in adults with knee osteoarthritis [J]. Chin J Integr Med(中国中西医结合杂志), 2019, 25(9): 691-695.
[54] FOLEY P L, ULERY B D, KAN H M, et al. A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia [J]. Biomaterials, 2013, 34(10): 2539-2546.
[55] DENG W, YAN Y, ZHUANG P, et al. Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug delivery system for local anesthetics and pain management [J]. Drug Deliv, 2022, 29(1): 399-412.
[56] GRILLO R, DIAS F V, QUEROBINO S M, et al. Influence of hybrid polymeric nanoparticle/thermosensitive hydrogels systems on formulation tracking and in vitro artificial membrane permeation:A promising system for skin drug-delivery [J]. Colloids Surf B Biointerfaces, 2019, 174:56-62.
[57] DOS SANTOS A C, AKKARI A C, FERREIRA I R, et al. Poloxamer-based binary hydrogels for delivering tramadol hydrochloride:sol-gel transition studies, dissolution-release kinetics, in vitro toxicity, and pharmacological evaluation [J]. Int J Nanomed, 2015, 10:2391-2401.
[58] AKKARI ACS, PAPINI J Z B, GARCIA G K, et al. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia:Physico-chemical characterization and pharmacological evaluation [J]. Mater Sci Eng C Mater Biol Appl, 2016, 68:299-307.
[59] CHAURASIYA A, GORAJIYA A, PANCHAL K, et al. A review on multivesicular liposomes for pharmaceutical applications:preparation, characterization, and translational challenges [J]. Drug Deliv Transl Res, 2022, 12(7):1569-1587.
[60] COMPANY T L. Phase Ⅰ/Ⅱ Dose-escalation study to evaluate safety, PK and efficacy of TLC590 for postsurgical pain management[DB/OL]. 2021 [2022-03-27]. https://clinicaltrials.gov/ct2/show/NCT03591146?term=liposome&cond=pain&phase=0&draw=2&rank=4.
[61] OCULIS. OCS-01 in treating inflammation and pain in post-cataract patients(SKYGGN)[DB/OL]. 2021 [2022-03-13]. https://clinicaltrials.gov/ct2/show/NCT04130802?term=nanoparticle&cond=pain&draw=2&rank=8.
[62] CHILDREN THFS. Evaluation of topical liposomal lidocaine and oral sucrose for treatment of pain in newborns undergoing venipuncture[DB/OL]. 2011 [2022-03-13]. https://clinicaltrials.gov/ct2/show/NCT00519207?term=liposome&recrs=e&cond=pain&draw=2&rank=33.
[63] SARAGHI M, HERSH E V. Three newly approved analgesics:an update [J]. Anesth Prog, 2013, 60:178-187.
[64] DANIEL L. Price M D, Mayo Clinic. EXPAREL® for Pain After Tonsillectomy[DB/OL]. 2017 [2022-03-08]. https://clinicaltrials.gov/ct2/show/results/NCT02444533?term=liposome&recrs=e&cond=pain&draw=1&rank=15.
[65] UNIVERSITY D M. The effect of exparel on post operative pain and narcotic use after colon surgery[DB/OL]. 2021 [2022-03-10]. https://clinicaltrials.gov/ct2/show/NCT02052557?term=liposome&recrs=e&cond=pain&draw=1&rank=41.
[66] PHILIP SCHAUER TCC. Bupivacaine liposomal injection(exparel) for postsurgical analgesia in patient undergoing laparoscopic bariatric surgery[DB/OL]. 2020 [2022-03-10]. https://clinicaltrials.gov/ct2/show/NCT02969187?term=liposome &recrs=e&cond=pain&draw=1&rank=48.

基金

国家自然科学基金项目资助(81973251); 河北省2021年度医学科学研究课题资助(20211108)
PDF(1370 KB)

Accesses

Citation

Detail

段落导航
相关文章

/